Prevention of Staphylococcus epidermidis biofilm formation using a low-temperature processed silver-doped phenyltriethoxysilane sol-gel coating.

نویسندگان

  • Niall Stobie
  • Brendan Duffy
  • Declan E McCormack
  • John Colreavy
  • Martha Hidalgo
  • Patrick McHale
  • Steven J Hinder
چکیده

Sol-gel coatings which elute bioactive silver ions are presented as a potential solution to the problem of biofilm formation on indwelling surfaces. There is evidence that high-temperature processing of such materials can lead to diffusion of silver away from the coating surface, reducing the amount of available silver. In this study, we report the biofilm inhibition of a Staphylococcus epidermidis biofilm using a low-temperature processed silver-doped phenyltriethoxysilane sol-gel coating. The incorporation of a silver salt into a sol-gel matrix resulted in an initial high release of silver in de-ionised water and physiological buffered saline (PBS), followed by a lower sustained release for at least 6 days-as determined by graphite furnace-atomic absorption spectroscopy (GF-AAS). The release of silver ions from the sol-gel coating reduced the adhesion and prevented formation of a S. epidermidis biofilm over a 10-day period. The presence of surface silver before and after 24 h immersion in PBS was confirmed by X-ray photoelectron spectroscopy (XPS). These silver-doped coatings also exhibited significant antibacterial activity against planktonic S. epidermidis. A simple test to visualise the antibacterial effect of silver release coatings on neighbouring bacterial cultures is also reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-temperature sol-gel-derived nanosilver-embedded silane coating as biofilm inhibitor.

Silver nanocomposite coatings are prepared by the sol-gel method for the prevention of biofilm formation on the surface of medical implanted devices. High-temperature processing of such coatings can lead to diffusion of nanosilver and reduce the amount of available silver particles for long-term effects. Using a low-temperature sol-gel method, we have successfully prepared silane-based matrices...

متن کامل

Biocide silver nanoparticles in two different silica-based coating

Silica-based coatings containing biocide silver nanoparticles have been synthesized using low temperature sol-gel method. Two different silane based matrices, phenyltriethoxysilane (PhTEOS) and tetraethyl orthosilicate (TEOS), were selected as precursor to prepare silica-based film. The films were analyzed by using UV–visible spectrophotometry, atomic force microscopy (AFM) and scanning electro...

متن کامل

Silver doped perfluoropolyether-urethane coatings: antibacterial activity and surface analysis.

The colonisation of clinical and industrial surfaces with pathogenic microorganisms has prompted increased research into the development of effective antibacterial and antifouling coatings. There is evidence that implanted biomedical surfaces coated with metallic silver can be inactivated by physiological fluids, thus reducing the bioactivity of the coating. In this work, we report the biofilm ...

متن کامل

بررسی اثـر نانـوذرات نقـره بر بیـوفیلم‌های ناشی از استافیلوکوکوس اپیدرمیدیس

Background and Objective: Staphylococcus epidermidis produces extracellular polysaccharide which is known as a biofilm. Biofilm is highly effective in establishing of this bacterium infections and can be formed on medical devices that are used in the body. The purpose of this study was to evaluate the effects of silver colloidal nanoparticles on bacterial growth and biofilm form...

متن کامل

Preparation and rapid analysis of antibacterial silver, copper and zinc doped sol-gel surfaces.

The colonisation of clinical and industrial surfaces with microorganisms, including antibiotic-resistant strains, has promoted increased research into the development of effective antibacterial and antifouling coatings. This study describes the preparation of metal nitrate (Ag, Cu, Zn) doped methyltriethoxysilane (MTEOS) coatings and the rapid assessment of their antibacterial activity using po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 29 8  شماره 

صفحات  -

تاریخ انتشار 2008